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Abstract—Automated code review approaches have gained traction in software engineering, promising to streamline the review
process by suggesting comments on code changes. However, verifying the semantic correctness of these automatically generated
comments remains a significant challenge, often requiring manual intervention. Current evaluation methods frequently rely on exact text
matches, which fail to account for the nuanced semantics of code review comments, leading to misclassification of valid suggestions. In
this study, we explore an evaluation framework that leverages pre-trained language models to assess semantic equivalence between
generated and ground-truth comments. By addressing this gap, our work aims to enhance the reliability of automated code review
tools, reduce the need for manual verification, and foster more practical adoption in real-world development workflows.

Index Terms—Code Review, Automated Code Review, Semantic Equivalence, Pre-trained Language Models, GPT-4,
all-miniLM-L6-v2, Comment Analysis, Software Engineering, Natural Language Processing, Embedding Models

1 INTRODUCTION

ODE reviews have become a cornerstone of modern
Csoftware development, ensuring code quality, main-
tainability, and adherence to best practices. By fostering
collaborative knowledge sharing, code reviews enable teams
to identify defects early and reduce long-term maintenance
costs [3]. However, the increasing complexity of software
systems, coupled with the expanding size and diversity of
development teams, has magnified the challenges of per-
forming efficient and effective manual reviews. As projects
grow, the need for automated solutions to augment the code
review process has become increasingly apparent.

Automating aspects of code reviews not only alleviates
the workload for developers but also enhances consistency
and reduces human error. A particularly challenging aspect
of automation is identifying semantically equivalent code
review comments—feedback that conveys the same intent
or addresses the same issue, even if expressed differently.
This task is critical for ensuring that automated systems pro-
vide meaningful insights without overwhelming developers
with redundant or irrelevant suggestions.

Early efforts in automating code reviews included tools
like Gerrit [24] and Phabricator [7], which focused on facil-
itating collaboration but lacked semantic analysis capabili-
ties. With the advent of embedding models like GPT-3 [5]
and PLBART [1], there is an opportunity to address these
gaps using state-of-the-art natural language understanding.

Advancements in machine learning and natural lan-
guage processing (NLP) have spurred significant progress in
automating code review tasks. Pre-trained language models,
such as Sentence-BERT [23] and GPT-4 [18], have demon-
strated the potential to understand and generate text in
ways that closely mimic human reasoning. Prior studies by
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Tufano et al. [26] and Hong et al. [13] have shown that these
models can assist in generating and evaluating code review
comments. However, many existing approaches rely on
exact text matching, which often misclassifies semantically
correct comments as incorrect. This limitation underscores
the need for methods capable of capturing semantic intent,
particularly in programming-specific contexts.

Furthermore, while general-purpose models like all-
miniLM-L6-v2 offer cost-effective solutions, their training
on natural language data makes them less adept at under-
standing programming-related nuances. On the other hand,
high-performance models like GPT-4 deliver exceptional se-
mantic understanding but come with scalability challenges,
including token-based pricing and computational overhead.
These trade-offs highlight the importance of evaluating
models not only for their effectiveness but also for their
efficiency in real-world scenarios.

This study evaluates the effectiveness and efficiency of
pre-trained language models in identifying semantically
equivalent code review comments. By leveraging multiple
prompts across Comment-Only and Code & Comment con-
texts, we aim to provide actionable insights into the models’
capabilities and limitations. Specifically, we address the
following research questions:

(RQ1) How effectively can we identify semantically cor-
rect code review comment recommendations? -
Identifying semantically correct code review com-
ments is vital for improving developer productivity
and ensuring high-quality code reviews. Accurate
automation reduces manual effort and minimizes the
risk of overlooking meaningful insights. The evalu-
ation results indicate that GPT-4 achieves a superior
balance between Precision and Recall, particularly in
the Comment-Only context, where it effectively cap-
tures semantic equivalence. In contrast, all-miniLM-
L6-v2 exhibits strong Precision but struggles to gen-
eralize to programming-specific tasks due to its re-
liance on general natural language training.



(RQ2) How efficiently can we identify semantically cor-
rect code review comment recommendations? - Effi-
cient evaluations are essential for scalability, particu-
larly for large-scale or continuous code review tasks.
This question addresses whether automated meth-
ods can process inputs rapidly and cost-effectively.
Both models exhibited rapid processing times, but
GPT-4’s token-based pricing limits scalability, while
all-miniLM-L6-v2 offers a cost-effective alternative
with trade-offs in performance.

By highlighting the strengths and limitations of GPT-4
and all-miniLM-L6-v2 in these contexts, this study provides
actionable insights for developers, researchers, and tool
builders aiming to enhance automated code review systems.

2 BACKGROUND

Code reviews are a cornerstone of modern software en-
gineering, serving as a critical process for identifying de-
fects, improving code quality, and fostering collaboration
within teams [3]. During a code review, developers examine
changes made to the codebase, provide feedback through re-
view comments, and refine the code based on this feedback.
These comments often include suggestions, corrections, or
clarifications aimed at improving the code.

A major challenge in automating code reviews lies in un-
derstanding the semantic equivalence of review comments.
For example, two comments like “Add input validation”
and “Check for invalid inputs” express the same intent but
differ in phrasing. Identifying such equivalence is essential
for ensuring that automated tools provide accurate and
meaningful feedback, reducing the need for manual review.

Semantic equivalence detection requires advanced natu-
ral language understanding, as traditional evaluation meth-
ods relying on exact text matching often misclassify seman-
tically correct comments as incorrect [13, 26]. This limitation
has driven interest in leveraging pre-trained language mod-
els, which have demonstrated strong capabilities in natural
language tasks.

Embedding models such as Sentence-BERT [23] and
CodeT5 [27] have transformed the way text and code are
analyzed, providing dense representations for similarity
tasks. Similarly, frameworks like Powers et al. [20] have laid
the groundwork for evaluating models using robust metrics
such as Precision, Recall, and MCC.

However, programming contexts introduce unique chal-
lenges. Unlike general-purpose text, code review comments
often depend on the surrounding code for context. Ad-
dressing this requires embedding models that incorporate
programming language semantics, enabling them to cap-
ture the interdependencies between code and comments.
These foundational concepts set the stage for evaluating
pre-trained models, such as GPT-4 and all-miniLM-L6-v2, in
identifying semantically equivalent code review comments.

3 STUuDY DESIGN

This section outlines the study design, focusing on (a) the
motivation behind the selection of subject systems and com-
munities, and (b) the data extraction, filtering, and analysis
procedures that were employed.

3.1 Subject Systems/Communities

The subject systems in this study were chosen based on their
relevance to automated code review evaluation tasks, specif-
ically in the context of identifying semantically equivalent
code review comments. The dataset utilized in this research
consists of 100 manually labeled samples originally derived
from prior work by Tufano et al. and Hong et al. [13, 26].
This dataset is uniquely positioned for evaluating semantic
equivalence due to its careful curation and focus on Java
code and associated review comments.

To ensure the validity and practicality of the study, the
dataset was selected based on the following criteria:

e The data must be curated by experts to ensure high-
quality labeling of semantically equivalent and non-
equivalent comments.

e The dataset should represent realistic code review
scenarios, with a balance between positive (seman-
tically equivalent) and negative cases.

o The data must align with the scope of prior work,
enabling continuity and comparability with existing
research on automated code review tools.

3.2 Data Extraction

The data extraction process for this study was simplified by
leveraging the replication package provided by Tufano et
al. [26]. This package included a carefully curated dataset
of 100 labeled samples, specifically designed for evaluating
automated code review systems. The following steps outline
how the dataset was utilized and prepared for analysis in
this study.

(DE1) Access and Utilize the Replication Package.

The first step involved accessing the replication package
provided by Tufano et al., which contains the raw data
necessary for this study. This step was essential to ensure
the validity and reproducibility of our analysis by rely-
ing on a pre-validated dataset curated by experts in the
field. The dataset includes labeled examples of code review
comments, categorized as semantically equivalent or non-
equivalent, alongside the associated Java code snippets.

To implement this step, the replication package was
downloaded from the publicly available repository specified
in the original study. The dataset included 36 positive sam-
ples (semantically equivalent comments) and 64 negative
samples. Each sample was formatted to include the target
and predicted comments, ensuring compatibility with the
evaluation framework of this study. The straightforward
structure of the replication package allowed for seamless
integration with our analysis pipeline without requiring
extensive preprocessing.

(DE2) Align Dataset with Evaluation Framework.

After acquiring the replication package, the next step
was to align the dataset with the specific evaluation frame-
work employed in this study.

The alignment process involved organizing the data
into configurations compatible with the study’s prompts.
Specifically:

o Comment evaluations, only target and prediction
comments were extracted.



e Code & comment evaluations, the associated
method-level Java code snippets were also included.

Each sample was formatted to fit the input requirements
of the models and the ten prompts used for evaluation.
The dataset’s pre-curated nature minimized the need for
extensive filtering or linking between elements, allowing us
to focus on testing semantic equivalence under the defined
experimental conditions.

By relying on this replication package, the study ensured
consistency with prior work while maintaining a high stan-
dard of data quality. This streamlined approach also allowed
us to allocate more resources to developing and refining the
evaluation framework rather than data preprocessing.

3.3 Data Analysis

Once the data was prepared, it underwent analysis to evalu-
ate the performance of two models, GPT-4 and all-miniLM-
L6-v2, in identifying semantically equivalent code review
comments. This analysis aimed to assess the effectiveness
and efficiency of these models under varying levels of
context. The following steps outline the methodology used
in the data analysis pipeline.
(DA1) Model Selection and Justification.

The analysis relied on two models: GPT-4 and all-
miniLM-L6-v2. These models were selected for their com-
plementary strengths and alignment with the study’s goals:

e GPT-4: Known for its state-of-the-art natural lan-
guage understanding and generation capabilities [6],
GPT-4 was used to evaluate semantic equivalence
across a series of tailored prompts. Its ability to pro-
cess complex inputs, including both code snippets
and comments, made it a robust choice for this study.

o all-miniLM-L6-v2: A lightweight embedding model
optimized for sentence similarity tasks [23], this
model was used via the Hugging Face API to gen-
erate embeddings for comments. Its efficiency and
scalability were crucial for conducting analyses on
large datasets without requiring extensive computa-
tional resources.

These models were chosen to balance accuracy, in-

terpretability, and resource efficiency. While GPT-4 excels
in reasoning and contextual understanding, all-miniLM-
L6-v2 provides a computationally efficient alternative for
embedding-based similarity evaluations. This combina-
tion allowed us to investigate both high-resource and
lightweight solutions to the problem of evaluating semantic
equivalence.
(DA2) Evolution of Prompt Design. To evaluate the se-
mantic equivalence of code review comments, i iteratively
designed and refined a series of ten prompts. These prompts
were divided into two main categories:

¢ Comment-Only: Comments were evaluated in iso-
lation to test the models” ability to assess semantic
equivalence using natural language alone.

e Code & Comment: Comments were accompanied
by the relevant code snippet, providing additional
context for more realistic evaluation scenarios.
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Through this iterative refinement, i aimed to balance
clarity, task focus, and alignment with real-world code re-
view practices. The following examples illustrate the two
primary categories of prompts:

Example 1: Comment-Only Prompt

"In the context of a code review,

two reviewers have made the following <
—>comments:

Reviewer 1: {target}

Reviewer 2: {prediction}

Do these comments point to the same —
~rissue?

Focus on the meaning and intent of the

comments.

Respond with ’yes’ or ’'no’."

Example 2: Code & Comment Prompt

"Below is a method-level Java code
snippet under review:

Code Snippet:

{input_value}

Two reviewers have provided feedback

about this code:

Reviewer 1: {target}

Reviewer 2: {prediction}

Based on the code and the comments, are<—
— both

reviewers pointing to the same issue?

Focus on whether the intent or meaning <
—of the

comments is equivalent.

Respond with ’yes’ or ’'no’."

To evaluate semantic equivalence under varying condi-
tions, i designed prompts for two key scenarios: comment-
only and code & comment. The comment-only prompt
(Example 3.3) isolates natural language understanding, fo-
cusing on whether the comments alone convey the same
intent. In contrast, the code & comment prompt (Example
3.3) incorporates relevant code snippets to simulate real-
world code review practices, where comments are analyzed
alongside the underlying code for additional context.
(DA3) Metrics and Statistical Tests.

The performance of each model was evaluated using a
range of metrics, including;:

e DPrecision and Recall: To measure the models’ ac-
curacy in identifying semantically equivalent com-
ments and their ability to capture all relevant cases.

e F1-Score, Accuracy, and MCC (Matthews Correla-
tion Coefficient): These metrics provided a holistic
view of model performance, balancing precision and
recall while accounting for true positives and nega-
tives.

e Cosine Similarity: For all-miniLM-L6-v2, cosine sim-
ilarity was used to quantify the semantic closeness
between embeddings of target and prediction com-
ments [23].
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By conducting a consistent evaluation across prompts
and metrics, the study provided insights into how each
model performs under varying contexts. This approach
enabled a comprehensive comparison of GPT-4’s contextual
reasoning capabilities and all-miniLM-L6-v2’s efficiency in
embedding-based similarity evaluations.

4 STUDY RESULTS

In this section, we present the results of our study with re-
spect to our research questions. For each research question,
we describe our approach to addressing it, followed by the
results that we observe.

(RQ1) How effectively can we identify semantically cor-
rect code review comments recommendations?

RQ1: Approach.

To answer this research question, we evaluated two pre-
trained models GPT-4 and all-miniLM-L6-v2 on identifying
semantically equivalent code review comments. Table 1 pro-
vides a detailed breakdown of model performance across all
prompts. The evaluation was conducted under two contexts:

o Comment-Only: Models assessed comments without
any associated code.

e Code & Comment: Models analyzed comments
alongside method-level Java code snippets.

RQ1: Results.

The evaluation results, summarized in Table 1, highlight
GPT-4’s superior performance in identifying semantically
correct code review comments. In the Comment-Only con-
text, GPT-4 achieved its highest metrics, including an F1-
Score of 0.8800, MCC of 0.8098, and Accuracy of 0.91.
These results underscore GPT-4’s strong natural language
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understanding capabilities, effectively capturing semantic
intent without the need for additional code context.

In the Code & Comment context, GPT-4 exhibited a
marginal improvement in Recall (e.g., 0.8889 for Prompts
7 and 9), suggesting that code snippets provide some utility
in resolving ambiguous cases. However, the overall gains
were minimal, indicating that GPT-4 performs effectively
with textual content alone in most scenarios.

In contrast, the all-miniLM-L6-v2 model demonstrated
strong Precision (0.8750) in the Comment-Only context but
struggled with Recall (0.1944). This disparity likely stems
from its general natural language training, making it
less equipped to interpret programming-specific comments
without explicit code-review context.

Figure 1 presents a radar chart comparing false posi-
tives (FP), false negatives (FN), and their overlaps for the
two models. GPT-4 exhibited a higher number of false
positives (6) compared to the all-miniLM-L6-v2 model (3),
with minimal overlap between the two (1 shared instance).
Conversely, the all-miniLM-L6-v2 model had significantly
more false negatives (29) than GPT-4 (3), with 3 instances of
overlap.

These results reveal distinct trade-offs between the mod-
els. GPT-4 excels at minimizing false negatives, making it
more reliable in capturing semantically correct comments,
whereas the all-miniLM-L6-v2 model demonstrates caution
with false positives, albeit at the cost of Recall. The limited
overlap in misclassification types highlights differences in
their underlying classification strategies, which could be
attributed to their training architectures and contextual un-
derstanding.

Overall, GPT-4’s balance of Precision, Recall, and F1-
Score makes it the more robust option for identifying seman-
tically correct code review comments. Its ability to handle
most cases with textual content alone emphasizes its utility
for automated code review tasks. The findings also sug-
gest potential opportunities for complementary ensemble
techniques, leveraging GPT-4’s strength in reducing false
negatives and all-miniLM-L6-v2’s focus on avoiding false
positives.

GPT-4 delivers the best balance of Precision, Recall, and
F1-Score, particularly excelling in the Comment-Only con-
text (F1-Score: 0.8800, MCC: 0.8098). By contrast, all-
miniLM-L6-v2, while achieving strong Precision, struggles
with Recall due to its lack of programming-specific training,
underscoring GPT-4’s suitability for automated code review
tasks.

(RQ2) How efficiently can we identify semantically cor-
rect code review comments recommendations?

RQ2: Approach.

To evaluate efficiency, we compared two pre-trained
models GPT-4 and all-miniLM-L6-v2 against manual anal-
ysis in terms of processing time and cost implications. The
evaluation spanned ten prompts across both Comment-Only
and Code & Comment contexts.

Efficiency factors considered include:

o Processing Time: Manual evaluations typically re-
quire several minutes to hours for a single pair



TABLE 1
Evaluation Results for GPT-4 and all-miniLM-L6-v2 Across Different Prompts

Model Prompt Precision Recall ~ F1-Score  Accuracy MCC
all-miniLM-L6-v2 Prompt (Comment Only) 0.8750 0.1944 0.3165 0.8824 0.8119
Prompt 1 (Code & Comment) 0.8333 0.4167 0.5556 0.76 0.4620

Prompt 2 (Comment) 0.9231 0.3333 0.4898 0.75 0.4535

Prompt 3 (Code & Comment) 0.7750 0.8611 0.8158 0.86 0.7059

Prompt 4 (Comment) 0.8056 0.8056 0.8056 0.86 0.6962

GPT-4 Prompt 5 (Code & Comment) 0.7561 0.8611 0.8052 0.85 0.6879
Prompt 6 (Comment) 0.8235 0.7778 0.8000 0.86 0.6931

Prompt 7 (Code & Comment) 0.8000 0.8889 0.8421 0.88 0.7485

Prompt 8 (Comment) 0.8049 0.9167 0.8571 0.89 0.7726

Prompt 9 (Code & Comment) 0.7805 0.8889 0.8312 0.87 0.7303

Prompt 10 (Comment) 0.8462 0.9167 0.8800 091 0.8098

of comments, depending on complexity [2, 17]. In
contrast, GPT-4 and all-miniLM-L6-v2 processed re-
sponses in near real-time.

e Cost Considerations: GPT-4’s API incurs token-
based costs, which can accumulate for large-scale
tasks [19]. On the other hand, all-miniLM-L6-v2,
accessed via the Hugging Face AP, is free and com-
putationally lightweight [8, 22].

RQ2: Results.
The results highlight the following;:

e Processing Time:

— Manual Analysis: On average, manual evalu-
ations took 5 to 10 minutes per pair of com-
ments [17].

— GPT-4: The API delivered responses in ap-
proximately 1 to 2 seconds per prompt [19].

- all-miniLM-L6-v2: Responses were returned
in under 1 second on average, due to its
lightweight architecture [22].

e Cost Considerations:

— GPT-4: GPT-4 incurs a cost of approximately
0.03 per 1,000 tokens [19], which limits its scal-
ability for large-scale or repeated tasks.

— all-miniLM-L6-v2: This model remains free to
use and lightweight, making it a cost-effective
alternative [8].

Compared to manual evaluation, both models exhibit sig-
nificant efficiency improvements. GPT-4 reduces evaluation
time from several minutes to just 1-2 seconds per prompt
but incurs token-based costs. In contrast, all-miniLM-L6-v2
provides responses in under 1 second and remains cost-free,
albeit at the expense of reduced accuracy in programming-
specific evaluations.

5 PRACTICAL IMPLICATIONS

This study provides valuable insights for developers, re-

searchers, and tool builders aiming to enhance automated

code review processes:

1. Prioritize tools with strong semantic understanding.
Models like GPT-4 demonstrated exceptional perfor-
mance in identifying semantically equivalent code review

comments, particularly in the Comment-Only context. De-
velopers can integrate such models into their workflows
to streamline code reviews, reduce manual effort, and
maintain high-quality feedback.

2. Balance precision and recall in evaluations. The limi-
tations of models like all-miniLM-L6-v2, particularly in
Recall, highlight the importance of balanced evaluation
metrics. Researchers should design experiments that as-
sess both Precision and Recall, ensuring a comprehensive
understanding of model behavior in nuanced scenarios
such as automated code reviews.

3. Optimize scalability for high-performance models.
While GPT-4 delivers exceptional semantic understand-
ing, its scalability is limited by cost and computational
demands [18]. In contrast, lightweight models like all-
miniLM-L6-v2 offer cost-effective solutions but often un-
derperform in nuanced programming tasks. This trade-
off aligns with findings in scalability-focused studies,
such as Li et al. [16].

6 THREATS TO VALIDITY

This section identifies potential threats to the validity of
our study and outlines the measures taken to mitigate their
impact.

6.1

A potential threat to construct validity arises from the extent
to which the chosen evaluation metrics (e.g., Precision,
Recall, F1-Score) capture the models’ ability to identify
semantic equivalence in code review comments. This threat
may emerge if these metrics fail to account for nuances
in human interpretation, such as contextual subtleties or
implicit meanings within comments. To address this, the
models were evaluated across multiple prompts and con-
texts, ensuring a comprehensive reflection of their semantic
understanding capabilities.

Construct Validity

6.2

A threat to internal validity concerns the possibility that the
observed performance differences between GPT-4 and all-
miniLM-L6-v2 are influenced by factors unrelated to their
semantic understanding abilities, such as prompt design
or API configurations. This risk could arise if the prompts

Internal Validity



inadvertently favor one model over the other. To mitigate
this, the prompts were iteratively refined to ensure consis-
tency and neutrality across both models, minimizing any
unintended bias.

6.3 External Validity

The primary threat to external validity stems from the
limited dataset size (100 manually labeled samples), which
may not fully represent the diversity of real-world code
review scenarios. This threat could manifest if the models’
performance varies significantly when applied to larger
or more diverse datasets. While this limitation exists, the
dataset was curated from prior research to ensure high-
quality and realistic code review contexts. Consequently,
the findings remain meaningful within the scope of this
study, though additional evaluations on larger datasets are
recommended for broader generalizability.

7 RELATED WORK

The challenge of improving code review processes has long
been recognized as a critical task in software engineering.
Early efforts primarily relied on manual reviews, which,
while thorough, were resource-intensive and prone to sub-
jective biases. As software systems grew in complexity, the
need for automated solutions became apparent. This need
led to the development of tools such as ReviewerBot [?
], which relied on rule-based heuristics to generate code
review comments. While effective in addressing simple
patterns, ReviewerBot lacked adaptability to nuanced and
context-specific scenarios, limiting its practical applicability.

Tools like Gerrit [24] and Phabricator [7] have been
widely adopted for collaborative code reviews. These tools
facilitate team collaboration and codebase management
but rely heavily on manual processes. This reliance has
prompted researchers to explore machine learning-based
approaches, such as Tufano et al. [26] and Hong et al. [13],
who demonstrated the potential of pre-trained models for
automating review comments. Despite these advancements,
achieving semantic equivalence in code review comments
remains an open problem, often requiring manual interven-
tion for validation.

Recent advancements in machine learning and natural
language processing (NLP) have paved the way for more
sophisticated approaches. CommentFinder [? ] leveraged
machine learning models trained on curated datasets to
recommend comments with higher accuracy and relevance.
However, its reliance on exact string matches in evaluation
often led to the misclassification of semantically equivalent
comments. Similarly, Li et al. [15] introduced AUGER, which
applies pre-trained models to automate review comment
generation but faces challenges in nuanced cases where
comments are context-dependent.

Parallel to these developments, embedding models rev-
olutionized NLP and programming tasks by representing
text as dense vector representations. Sentence-BERT [23],
widely used for semantic similarity tasks, demonstrated
the utility of embedding models in capturing natural lan-
guage semantics. However, models like Sentence-BERT
struggled in programming-specific contexts due to their
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training on general language corpora. To address these
limitations, programming-aware models such as CodeBERT
[10], GraphCodeBERT [11], and CodeT5 [27] were intro-
duced. These models incorporate programming language
semantics, enabling better performance in tasks such as
code summarization, defect prediction, and code-to-code
retrieval.

Recent research has also explored hybrid models and
methods. Ahmad et al. [1] proposed PLBART, which in-
tegrates programming and natural language semantics,
achieving state-of-the-art performance in program repair
and translation. Similarly, UniXcoder [12] offers a unified
framework for understanding and generating programming
languages, addressing challenges in multi-purpose down-
stream tasks. Hybrid approaches leveraging knowledge
graphs [14] and pre-training on domain-specific datasets
[21] have shown promise in bridging the gap between
general-purpose and programming-specific embeddings.

Evaluation metrics play a critical role in assessing the
effectiveness of these approaches. Powers [20] introduced
robust metrics such as Precision, Recall, and MCC, which
have become standard for evaluating semantic similarity
tasks. Fang et al. [9] surveyed metrics for evaluating pro-
gram analysis tools, identifying challenges in balancing
computational cost and interpretability. Li et al. [16] high-
lighted the scalability challenges associated with training
and deploying deep learning models in software engineer-
ing contexts.

While the field has made significant strides, key chal-
lenges remain. Studies such as Tufano et al. [25] highlight
the potential for deep learning models to predict bug-fixing
patches, suggesting synergies between automated code re-
views and defect prediction. However, as highlighted by
Beller et al. [4], integrating these approaches into CI/CD
workflows introduces scalability and performance trade-
offs.

8 CONCLUSIONS

This study investigated the effectiveness and efficiency of
automated methods for identifying semantically equivalent
code review comments—a crucial task for enhancing the
code review process in software engineering. We evaluated
the performance of two pre-trained models, GPT-4 and
all-miniLM-L6-v2, across multiple contexts to assess their
suitability for this task.

The evaluation was conducted using ten prompts span-
ning Comment-Only and Code & Comment contexts, with
metrics such as Precision, Recall, F1-Score, Accuracy, and
MCC. GPT-4 demonstrated a robust capability for identify-
ing semantic equivalence with balanced performance across
metrics, while all-miniLM-L6-v2 provided a cost-effective
yet less nuanced alternative.

e GPT-4 achieves the best balance between Precision
and Recall, particularly in the Comment-Only context,
making it highly effective for identifying semantic
equivalence in code review comments.

e Code snippets add marginal benefits, resolving
edge cases but providing only slight improvements
in overall performance.



e All-miniLM-L6-v2 offers a cost-effective alterna-
tive, though it struggles with programming-specific
nuances due to its reliance on general natural lan-
guage training.

e Cost considerations underscore the importance of
scalable solutions for employing high-performance
models like GPT-4 in large datasets or continuous
evaluation settings.

These findings offer actionable insights for developers,
researchers, and tool builders, emphasizing the need to
balance quality, cost, and scalability in designing automated
code review systems.

Future Work.

This study has demonstrated the potential of pre-trained
language models such as GPT-4 [18] and all-miniLM-L6-
v2 [23] in identifying semantically equivalent code review
comments. However, it also highlighted the limitations of
general-purpose models like all-miniLM-L6-v2 when ap-
plied to programming-specific contexts.

Future research will explore embedding models tailored
for programming tasks, such as CodeT5 [27], GraphCode-
BERT [11], and UniXcoder [12], which integrate program-
ming language semantics into their training. Evaluating
these models alongside general-purpose embeddings will
provide deeper insights into their effectiveness in capturing
the nuanced intent behind code review comments.

Additionally, extending the dataset to encompass a
broader variety of programming languages and review sce-
narios will enhance the generalizability of findings. This
expansion will help identify strengths and weaknesses of
emerging models across diverse programming contexts, en-
abling the development of more effective automated code
review systems.
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APPENDIX A
PROMPTS USED IN THE STUDY

This appendix provides the full set of ten prompts used
to evaluate pre-trained language models for identifying se-
mantically equivalent code review comments. The prompts
are presented in the order they were used.

Prompt 1 (Code & Comment):

"The input field is a code snippet —

the comment in the Target.
Input Field:

Given this context,

semantically equivalent?
Respond with ’yes’

Target:
Prediction:

—~related to
{input_value}

are the following <—
—rcomments

or "no’.

{target}
{prediction}"

Prompt 2 (Comment):

"Are the following code review comments
semantically equivalent?
Respond with ’yes’ or ’'no’.

Target: {target}
Prediction: {prediction}"

Prompt 3 (Code & Comment):

"Assuming the code snippet below is <—
—~being

reviewed.

Code Snippet: {input_code}

If Reviewer 1 makes the comment:

{target_comment}

And Reviewer 2 makes the comment:
{predicted_comment}

Are these two comments pointing to the
same issue?
Respond with ’'yes’” or ’'no’."

Prompt 4 (Comment):

"In the context of code review in <
<»software

projects,

If Reviewer 1 makes the comment:

{target_comment}

And Reviewer 2 makes the comment:
{predicted_comment}

Are these two comments pointing to the —
—rsame

issue?

Respond with ’yes’ or ’'no’."

Prompt 5 (Code & Comment):

"Assuming the method-level Java code <
~snippet

below is being reviewed.

Code Snippet: {input_value}

If Reviewer 1 makes the comment:
{target}

And Reviewer 2 makes the comment:
{prediction}

Are these two comments pointing to the —
—rsame
issue?

Respond with ’'yes’” or ’'no’."




Prompt 6 (Comment):

Prompt 9 (Code & Comment):

"In the context of code review in Java <—
—~software

projects,

If Reviewer 1 makes the comment:

{target}

And Reviewer 2 makes the comment:
{prediction}

Are these two comments pointing to the —
—rsame

issue?

Respond with ’yes’ or ’'no’."

Prompt 7 (Code & Comment):

"Below is a method-level Java code —
~—»>snippet

under review:

Code Snippet:

{input_value}

Two reviewers have provided feedback —
—rabout this

code:
Reviewer 1: {target}
Reviewer 2: {prediction}

Based on the code and the comments, are—
~— both

reviewers

pointing to the same issue? Focus on <
—whether

the intent

or meaning of the comments is <
—sequivalent.

Respond with ’yes’ or ’'no’."

"You are a reviewer analyzing a method-<—
—level

Java code snippet under review.

Your task is to determine whether the —
—~following

two reviewers are pointing to the same —
—issue

in their feedback:

Code Snippet:
{input_value}

Reviewer 1: {target}
Reviewer 2: {prediction}

Focus on whether the intent or meaning <
—of the

comments is equivalent.

Write ’'yes’ if both comments are <
—pointing to

the same issue or 'no’ if they are not—
%'"

Prompt 10 (Comment):

Prompt 8 (Comment):

"In the context of a code review, two —
—reviewers

have made the following comments:

Reviewer 1: {target}

Reviewer 2: {prediction}

Do these comments point to the same —
~rissue?

Focus on the

meaning and intent of the comments.

Respond with ’yes’ or ’'no’."

"You are a reviewer analyzing two code —
—review

comments.

Your task is to determine whether both —
—rcomments

are pointing to the same issue.

Reviewer 1: {target}
Reviewer 2: {prediction}

Focus on the meaning and intent of the

comments.

Write ’"yes’ if both comments are —
—pointing to

the same issue or ’'no’ if they are not—
=W
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